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Abstract

Optimal control of epidemics is a major challenge as control is costly and damages are
substantial. Complementing the raising literature on the topic, we focus in this paper
on coordination and cooperation issues related to control strategies. Modeling an epidemics
affecting perennial crops over space and time, we consider a dynamic game where several land
owners choose whether to control an epidemics within their property. Analyzing the game
both in a cooperative and non-cooperative fashion, we draw insights on initial conditions
likely to produce inefficiencies and coordination issues due to private management. We
characterize game situations according to spread intensity and infection levels and focus on
landowners strategic behaviors generating inefficiencies within a network.
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1 Introduction

Pathogens and diseases cause severe losses and constitute major threats to health and agriculture.
Optimal control is a key challenge in epidemiological, phytopathological and economics modelling.
In particular where, when and how to address these threats are major concerns as control costs
are usually high and management budgets are limited (Dybiec et al.,2004,2005). Mathematical
modelling is useful to discuss these questions as it allows to simultaneously account for economics
and epidemiological aspects and draw recommendations for optimal decision-making.

Most of the literature on the topic considers management strategies as if a single decision
maker had the ability to carry out actions to prevent and control the spread over space (Horan
et al.| (2005)), |Aadland et al.|(2015), |Atallah et al.| (2017)), Parnell et al.|(2010)) . This framework
is appropriate for deriving insights about first best optimal management that a single landowner
or health agency in charge of an epidemics could target. However, agricultural land is usually
owned by multiple landowners that choose individually how to deal with their property. Human
epidemics often spread toward national borders and individuals have freedom of choice regarding
their health. This makes optimal management both a cooperation and a coordination problem
as viruses and pathogens spread but management is performed by agents that do not necessarily
cooperate nor even coordinate between each others. There is therefore space for management
inefficiencies as well as coordination issues.

Relatively little work has been carried out to investigate decentralized (uncoordinated) man-
agement. FEpidemics pertains to a larger class of mobile public bad comprising pest, invasive
species and mobile pollutions (Smith et al. 2009). Principal feature of this class of problems
is the spatially explicite dispersion of the bad and the requirement to implement a spatially
oriented strategy. In the area of pollution management, some important contributions have been
made. Brock and Xepapadeas| (2008) and [Brock et al.| (2014) consider a dynamic game with an
incomplete internalization of the spatial externality assuming optimizing agents as myopic, i.e.
considering external effects as outside their control. Contrasting with these papers, |de Frutos
and Martin-Herrdn (2017) study a dynamic optimization control model in a spatial setting ac-
counting for the transportation of pollution across space. The key of their paper is to both add
an explicit treatment of the spatial pollution externality and an analysis of decentralized man-
agement. Considering a two-player non-cooperative continuous game in space and time with a
linear quadratic objective, they characterize the feedback Nash equilibrium of a space-discretized
model. Two principal insights are made. First accounting for spatial aspects drastically modifies
the outcome of the game and therefore the emission policies. Second, decentralized manage-
ment is inefficient but inefficiencies can be solved by implementing a tax scheme. Although
this paper is relevant for our analysis, a major difference between transboundary pollution and
epidemics, pest or invasive species management is that pollution travels but does not reproduce
endogenously. No outbreak problems are in place and the key to the management strategy is to
efficiently address the negative spatial externality between states or landowners.

Several papers on epidemics, pest and invasion management examine the cooperation issue com-
paring centralized and decentralized control. Bhat and Huffaker| (2007) consider a spatially
dynamic game between two landowners impacted by a negative spatial externality and show
that the potential economic gains from cooperation can be substantial. Complementing this
result, |Atallah et al.| (2017) show that benefits from cooperation increase with the level of het-
erogeneity between patches and that players moving first impacts other players strategy either
forwarding further efforts or laissez-faire. Benefits from cooperation in addressing a pest with
spatial spread are more fully examined by |[Epanchin-Niell and Wilen| (2014). They show that
benefits from cooperation can be realized even if cooperation in efforts is partial, with a degree
of cooperation inversely correlated with control costs. In line with this result, [Fenichel et al.



(2014) show numerically that the more valuable the land, the more ambitious the control plan
implemented unilaterally by landowners. |Grimsrud et al.| (2008) show that the lower the magni-
tude of an invasion, the higher is the benefit from cooperation.

A common feature of these papers is that they rest upon numerical analysis and simulations
of specific case studies. A recent exception that provides a theoretical treatment of the non-
cooperative game across several heterogeneous landowners controlling a mobile, renewable public
bad is |Costello et al.| (2017)). Considering an infinite-discrete-time linear-quadratic differential
game, the authors analyse decentralized owners incentives and contrast decentralized decisions
with socially optimal control pattern across space and time. Two principal insights are made.
The first is on conditions for decentralized management to be inefficient. They show that when
marginal dynamic cost of the bad is high, eradication is optimal in both cooperative and non-
cooperative management settings. Similarly, if the marginal dynamic cost is low then inefficien-
cies due to decentralized management is low. However, if this cost is moderate, inefficiencies can
be significant making coordination schemes economically relevant. The second insight is on the
importance of initial conditions on public bad stocks, on spread parameters and on heterogeneity
between parcels. They show in particular that control increases with the stock of public bad, that
the benefit from cooperation increases with the rate of spread, that heterogeneity of infection
across space incentivizes low efforts in the non-cooperative setting.

Complementing |Costello et al.|(2017)) and |de Frutos and Martin-Herran| (2017) , this paper
analyse non cooperative behavior across a set of landowners controlling a mobile public bad over
a landscape. Without loss of generality we take as a motivating example for our model the
management of the epidemics of Plum Pox Virus (PPV) affecting fruit trees. Initial conditions
are described by the number of infected and uninfected trees and we consider at each period,
a sequence involving control, growth and spread. Our model depart from |Costello et al.| (2017)
or |de Frutos and Martin-Herrdn| (2017) in three principal respects. First and foremost, we
assume a finite horizon setting. Strategies to control PPV as well as many plant epidemics
and invasive species are usually set over a finite time period. Similarly, many human epidemics
are cyclical involving management strategies over finite time span. Second, we assume linear
damage function. Although the epidemics damage may be convex as assumed by [Costello et al.
(2017), many epidemics affecting perennial crops admit linear damages as the economic impact
is proportional to the volume of perennial crops infected. For example, in the case of PPV,
the valence of the disease is measured by the number of trees infected and each tree infected
translates in a fixed economic loss. Third, we specify management costs using a fixed control rate
whereas any control level along a convex abatement cost can be chosen in |Costello et al.| (2017]).
In our model, as this is often the case in epidemics management, control is not continuous and
the regulator can either detect and control the epidemics within a patch or not.

These three modeling features are crucial in terms of policy recommendations for at least three
reasons. First and foremost, our model sheds light on the fact that multiplicity of equilibria may
be an issue in this class of problems. In addition to being useful in understanding inefficiencies
due to lack of cooperation, our model is also useful in characterizing coordination issues by
delineating the parameter space for multiplicity of equilibria to arise. While the problem of
multiplicity has been broadly eluded from this literature, we show that it constitutes a salient
issue. Second and contrasting with |Costello et al.| (2017) or [Fenichel et al| (2014])), strategic
interactions in our model are not pure strategic complements. The nature of strategic interactions
has been highlighted as a key concept within this literature and it has been showed that strategic
complementarity between landowners incite control in neighboring patches and vice-versa. This
led [Fenichel et al.| (2014) to argue that there is no free riding in their model and |Costello et al.
(2017) to argue that their mobile public bad game is a spatial analog of the ”weaker link”
public good described by |Cornes| (1993). We show that according to parameter space, our model



may exhibits inter-temporal strategic substituability, with potential freeriding behaviors, inter-
temporal and contemporaneous complementarity. This has important consequences on general
recommendations as, in the class of problems we describe, the incentive to control the public
bad does not necessarily increase with the control effort of other landowners. Third, as we
model a finite horizon game, our model allows us to discuss strategic transitions. In line with
Fenichel et al.|(2014), our model allows us to discuss thresholds on infection levels at the origin
of strategic transitions. This constitutes a major difference with Costello et al.| (2017)) as in their
model, optimal control for a given time period does not depend on the infectious state at the
beginning of the period.

The paper proceeds as follows. Section 2 introduces our model. We first present the mo-
tivating example at the origin of the paper, that is the management of the epidemics of PPV.
Building on this example, we define the eco-epidemiological model. We end the section with a
presentation of the epidemic game. Section 3 presents our results. We analyze in details the sim-
ple case of a two patches two time periods model with a specific focus on subgame perfect Nash
equilibrium solution. We first analyze strategic interactions. Second, we explore the parameters
space and describe some specific outcomes of the epidemic game. This includes an analytical
characterization of initial infectious levels leading to multiplicity of equilibria in a fully symmetric
case. Third we deal with social inefficiencies that emerge from private management. Section 4
concludes and discusses relevant extensions of this work.

2 The model

2.1 Epidemiological model

Spatio-temporal structure of the problem Our model consists in a discretized T steps
N patches framework that we simplify into a two steps two patches model in the analysis part.
Consider a spatially explicit landscape composed of N patches or orchards we denote ¢, with
it =1,..,N. For each patch, we follow two state variables, the quantities of infected (I;) and
susceptible (S;) trees. At the beginning of each period, ¢, t = 0, .., T—1, patch i contains I;* € Rt
infected trees and S;* € Rt suitable trees that are susceptible of being infected over the next
periods.

In our settings T is finite. All orchards have a finite lifespan and we assume that at the end

of the T periods, all remaining trees do not have any residual value. This important restriction
corresponds to a case in which production cycles are synchronized among patches. We assume
that all trees are from the same cohort, and that replanting does not occur during the T" periods
E It follows that in patch 4, the total number of trees I; + S; may not be constant but decreasing
over the T periods, due to the removal of infected trees. Our problem is thus framed using a
spatialized susceptible infected removed (SIR) model.
In our decentralized framework, patch i is owned by landowner 7 and at each period ¢, landowner
i freely chooses whether he will implement active management. In this model we consider man-
agement by removal of infected trees which has been identified as the main lever against Sharka
(Rimbaud et al.| (2015))).

If a patch is managed, a fraction py,,, of the infected trees is removed. The parameter p,,qz
indicates how management is efficient. In the cases we study, 0 < pmee < 1 meaning that
the outcome of management is imperfect in the sense that infected trees cannot be completely
removed. In the Sharka example, this inefficiency is explained by the presence of asymptomatic
trees (Dallot et al. 2004). At each period, a landowner faces a binary choice: to manage its

1This is the case for Prunus crops where all trees have the same age within an orchard



orchard (which consists in removing a fraction p,,q, of infected trees) or to let the virus spreads
within and outside the orchard. The binary variable p! € {0; pjaz} captures the management
decision for patch i at time t.

We also assume that, at the beginning of each period, landowners take their decision with a
perfect knowledge of the system state. They are able to observe p,,q. X I infectious trees, and
deduce the total number of infected trees using the knowledge of pyaz-

Diffusion model

From time ¢ to time t + 1 the system evolves according to difference equation that we will
call the evolutionary law. It is constructed as a sequence of events. Management occurs at the
beginning of the period, here time ¢. After management, it remains I*(1 — p!) infected trees in
patch i. Following the “management phase”, “growth and spread” of the infection takes place
from the remaining infected trees. In order to model heterogeneous dispersal of the pathogen
over space we introduce the parameters rj; (i,5) € [1: N]2. r;; represents the average number
of new infections in patch ¢ per infected tree in patch j during a time period. It is not obvious
that these parameters are time independent as the number of new infections might depend on
the number of susceptible trees within an orchard. However when the level of infection is small
comparing to the size of orchards (I << S), they can be considered as constant and approached
using measurable data. Experts can show how to estimate those parameters for the Sharka case
using available information. The hypotheses (I << S) also makes us avoid the upper bound
problems corresponding to cases in which all trees are infected within a patch. We only focus
on orchards with small to intermediate prevalence. The evolutionary law links the states of the
system in times ¢ and ¢t + 1. Associating diffusion and management, we write:

N
I =101 = pl) + Y T = ph)rsi, (1)
=1
N
Sf“ = Sf - ZI;(l - P;-)ij (2)
j=1

with, by assumption, S;* > 0.

I f"’l is the sum of remaining infected trees after management plus newly infected trees in period
t. Sf“ is simply constructed as the quantity of susceptible trees at time ¢ minus the number of
new infections in period t. We define f, as the function describing the evolutionary dynamics
for all patches such that (I'T1, S*1) = f(It, S, p').

2.2 FEconomic model

Costs and benefits The profit generated by the exploitation of a patch is modeled as the
discounted sum of benefits and costs over the T' time periods. For a period, the gross profit
generated by an orchard is adapted from Rimbaud| (2015)), with some differences. We consider
that production by infected trees keeps a value, which is an important feature of our model.
We will note u; the value of the yearly production per infected tree in patch i and v; the value
of the production by a sane tree. Because the disease generates damages, we obviously have
u < v. Moreover, the omission of the production costs constant with respect to the optimization
problem (e.g. cost independent from the outbreak management) is another difference between
our model and [Rimbaud| (2015]).



Before giving expressions for benefits and costs, we need to clarify the temporal framework.
we consider that period ¢ links times ¢ and t + 1, so the first period is period 0.

Benefits for period ¢ are computed according to the state of the system after management
and diffusion (thus using I;11 and Siy1) because the harvest occurs at the end of period ¢.

Bit = f(Sf’Itapt)/'(Uivui) (3)
= Sf—i_l’l}i + IZH_l’U,Z‘ (4)

Management costs take into account a monitoring cost that depends on the size of the patch,
and a cost depending on the number of infected trees removed. The total management cost

writes: .

(ca+ L ch i) + cpl I (5)

pmaa:

Cit =1,

=Pmazx

where ¢, represents an access cost to the patch, A; is the area of patch i, ¢, is an inspection
ot

is the fraction of the patch managed, and ¢, an additional cost

max

cost per unit of surface, pp
per infected tree removed. Considering, p! € {0; pmas} total cost for landowner i at period ¢ is
either C;* = 0if pt = 0, or C;* = cq + cpA; + copi It if pb = prae. Writing cf = ¢q +cpA; for the
fixed cost, equation [5| becomes:

t
C;t = pi (Ca + cnA;) + crptIl. (6)

7
pma:z:

Profit function Taking into account benefits and costs, we express the profit function !
corresponding to period t:

= B! - C! .
¢
Wf(pt’ﬁst):(Sﬁl“i“ﬁl“i— - (Cf)_crpf'ﬁt> (8)
pmax
subject to:

(I 85 = F(1', 8%, ).

We assume that bills are paid at same time as the harvest occurs. It is therefore not necessary
to discount costs differently from benefits. Denoting the discount factor 6%, with 0 < 6 < 1, the
discounted profit of landowner i over the T periods writes:

T-1

t

‘/iT(IO7 SO7pO, (23 pT_l) = Z 5t (S;H_lvi + If+1ui - chilzt - ppz(cf)> (9)
t=0

subject to :

IS = F(I 81 ).

The figure [I] illustrates the structure of this model in the two-times steps two-patches case.
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Figure 1: Temporal structure of the game

2.3 Decision making framework, solution concept

We model the decision making process using a game theoretic framework with a feedback infor-
mation structure. In these settings, landowners decide whether they are willing to manage their
patch at the beginning of each period, with a perfect knowledge of system state. Each agent
maximizes its own profit and behaves rationally, taking into account that other agents do the
same. This kind of discrete time dynamic game is associated with the Subgame Perfect Nash
Equilibrium (SPNE) solution concept and we will only focus on pure strategy equilibria. This
paper focuses on the 2 players / 2 time periods / 2 patches case (2/2/2 model) whose structure
is illustrated in figure

Feedback strategies and management paths

We solve the game using the feedback information structure with perfect knowledge of the state
variables. In this modeling framework, at each step, agents build their strategies as functions of
the state variables. In the case of the two steps epidemic game, a strategy is a function o (¢, I?),
with ¢ € {0,1} and we still assume I << S.

Given initial conditions and a pair of strategies, the outcome of the 2/2/2 game can be
predicted. We thus associate a management patch to each set of strategies and initial condition.
A management path in the 2/2/2 game will be denoted as a vector p = (p°, pt) = (o9, p3, p1, p3),
where pl is player’s i action at time ¢.



We re-define as well the payoff function, with feedback strategies as arguments:

T—-1
JI(I7, 87, 01,09) = Z S'at(I', 8" o1 (t, 1), 02(t,1")) (10)
t=T1

subject to :
(ItJrletJrl) = f(Ita Stao—l(tajt)702(t7lt))'

We introduce as well the value function W; as player j’s discounted payoft emerging from an
equilibrium path starting at t = 7:

T-1
Wi = 3w (1) 0% (4. 1) )
t=1
: t+1 __ t * t * t
with I+ —f(I 7Uj(t7[ )7073'(757[ )) (12)

The optimization problem
The problem we need to solve for finding feedback equilibrium in pure strategies is summarized
by the system of equations (for j, —j, and ¢ € {0,1}):

oi(t,I') = argm{;}x{ﬂ'j((lt), ph o (1) + SWHL(IH)Y (13)
pv

J

(It+17st+1) = f(ItaStaal(tvjt)702(t7]t))'

which can be solved using backwards induction. This justifies that, for a particular initial
condition, our multistage game can be solved using a game tree such that the one we present
now.

Extensive form representation

Considering a particular initial condition, the game might then be represented in extensive
form as a game tree 2| where each branch corresponds to a potential management path and
each leaf is associated with the players payoffs. This representation allows to get insight on the
backwards reasoning. We then get insight on the global solution of the two step model, applying
a backwards induction algorithm to many different initial states. In the case the computation of
the complete resolution of the game is heavy, the solution can be reconstructed point by point
using extensive form formulation.
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Figure 2: Illustration of the different potential outcomes for the two patches two time periods
game using a game tree. Letters at the tree’s leaves correspond to players payoffs. Those are
computed according to the value functions (equation E[) along the different branches: a; =
V2(0,0,0,0,1° 89, a; = V£(0,0,0,0,1° 5°) and so on...

2.4 Methods and results presentation

Example presented along this document are produced using the algorithm presented in section
[.1] using parameters introduced in section[5.2} We still are in the case of a two-patches two-time
periods model. Parameters have been chosen in order to generate rich behaviors and explore the
model features. We remain in a symmetric case, excepting with respect to the initial state.
We present here two numerical experiments, that differ only with respect to the detection rate

(pmam )

3 Results

In this results section we first analyze strategic interactions within our simple two players / two
patches / two stages game. Second, we explore the feedback equilibrium structure and show
situations with multiple pure strategy equilibria, situations without pure strategy equilibria,
situations with free-ridding, and explain how the strategic effect contributes to the different
equilibria. Third we discuss social inefficiencies emerging from private management.

3.1 Strategic effects in the epidemic game

The 2 players / 2 patches / 2 periods epidemic game seems to be quite a simple game. However,
it stills presents many parameters and players’ decisions depend on a bunch of different effects.
Players action have direct effects on the outbreak propagation. With the feedback information

)



structure actions might also have indirect effects through the influence on other players actions
(see for example [Fudenberg and Tirole| (1984)). Our first results make clear how those effects are
shaped in the epidemic game, and specifically how inter-period substitutability might be present
according to the initial condition. Second this section clarifies how direct effects and strategic
effects are linked (and might be opposed) in a player best response formula.

There are not immediate strategic interaction in the one stage game
The one stage game has a solution in dominant strategies, meaning that the best action of
each player does not depend on other players actions but only depends on a threshold on the
quantity of infected trees. In this model actions by other player do not not have an immediate
effect on the efficiency of players ¢ action. This result is summarized in proposition
Proposition 1 : Assume that r;;(v; —u;) —u; — ¢, > 0; the one stage game from ¢ = 1 admits
at least one equilibrium in dominant strategies; player’s ¢ action is governed by a threshold «;
for the infection level in his patch:
Pmaz if [11 > o4
p (I =4 0if I} <oy with o = i o
Pmaz or 0if I} = a; :

O

The threshold «; appears because detection effort is associated with a cost independent of the
number of infected trees. When there are fewer infected trees the same effort allows to avoid less
infections (because detections are less frequent) but still has the same fixed cost. Management
becomes profitable from a certain number of infected trees. The monetary balance associated
with the removal of one infected tree is, for one period: F; = (ry;(v; —u;) —u; —¢,-) €. Each time
an infected tree is removed, r;; infections are avoided in patch in the next growth period saving
(vi — u;), whereas production value and the removal cost are lost. If F; > 0, action is profitable
for player i, even for a single step time horizon, in the case where the product of F; and the
number of avoided infections exceeds the fixed cost cy. If F; is not positive, it means that the
amount of money that would be spent for management is more than what is saved from infections
avoided in case of removal. In this case there is no management in the one stage game, whatever
the level of infection is. However, it might become profitable if agents would consider longer
time horizon as there is propagation of the infection at each step. Importantly, such a threshold
structures implicates that eradication is not achievable (because management is only partially ef-
ficient). The economic question addressed here is therefore related to the relevant level of control.

Second step optimal action depends on the first step action: emergence of strategic
effects The fact that the one stage game displays dominant strategies simplifies the under-
standing of the two stages game. Using the knowledge of the evolutionary law, the optimal
decisions in the second step might be precisely predicted as functions of the initial state I° and
the knowledge of players actions at time 0, p = (p, p9). Therefore, player i’s second step action
in the two stages game is function of (I and p°) but not of pj, player’s j action at the beginning
of the second step.
Proposition 2 : In the game, second step actions for a rational player are determined by
I° and p° (recall that the other player’s second action does not intervene): for i € {1;2},
1914
pmaa: lf I]O > = I1r(1+7”)
i
it
T

Tji

e if p° = (0,0) then: p! =

10



. 0 Ociflg(l%ﬂ“ii)

I- > I'Sjtl']-(l_p)max)
e 70 a; —I; (1473

0if Ij < T pmas)

o if p” = (0, prnaz) then: p}

a; —I0(147) (1= prax)

Pmaz if IJQ > ) i
e 70 a;i—1I; (147ri) (1= pmax)
0if I7 <

Tji

e if p° = (pyaz,0) then: p} =

. 0 ai7[?(1+r“)(lfpmaw)

Pmaz if I] > . rji(1—pmaz)
p— ;=1 (147:i) 1=pmaz)

0 lf I] < Tji(lfpvnaa:)

o if PO = (pmaz»pmaz) then: ,0% =

O

Proposition [2| has a nice geometric interpretation. Each inequality is drawn from a potential
first step action and defines a line in the plan (I9,19). Four lines are related with action of
player 1 and four other lines are related with action of player 2. If a point I is above, say the line
corresponding to action p% in the case where pg = (pmaz,0), it means that in the case this first
step indeed occurs, player 1 is going to do pi = pyaz in the second step. Figure [3|illustrates the
8 lines in a symmetric example. This graphical representation makes clearly appear a strategic
component in the 2/2/2 game and shows how it depends on the initial infectious condition, each
polygon representing a particular combination of inter-temporal effects. Indeed, there are plenty
of situations in which, a variation in player i first step action generates a change in the second
step outcome. Let’s see how this might be read.

11
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Figure 3: Illustration of the 8 lines defined in proposition [2] for parameters corresponding to
a symmetric example. For each line, the associated first step is indicated on the graph. Each
numbered zone corresponds to a particular strategic situation. Representations of these situations

in term of games paths are provided in supplementary material (table [L9).

In order to highlight inter-temporal strategic interactions in this epidemic game, we introduce
the first step equivalent game. It is a representation that indicates, for each potential couple of

first step actions the following optimal second step.
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player 2
0 P
0] 0,0,07*(f(0,0)),05*(£(0,0)) [ 0,p,01*(f(0,p)), 05" (f(0,p))
p | p0,01*(f(p,0)), 03" (f((,0)) | p,p, 01" (f(p,p)), 05" (f(p,p))

Figure 4: Representation of the equivalent game in terms of management paths according
to first step choices. Each box of the table is filled as follows: (p9, p9, oi*(f(p?,09,1°)),
ad* (f(p9,09,1°)) where p?, and pJ are management options at t = 0 corresponding to a
box, f(p{,p3,1°) = I' is the resulting state at ¢ = 1 computing using the evolutionary law,
a1*(£(0,0)), and o1*(£(0,0)) correspond to the Nash outcome for the second step subgames (see
proposition 1).

player 1

Such a representation allows to qualitatively analyze inter-temporal strategic interactions by
looking at the outcome of a change in player i’s first step action on second step optimal actions.
Let’s have a look at an example (that corresponds to what happens in zone 8 in figure [3)):

(0,0,p,p) | (0,p,p,0)
(p,0,0,0) | (p,p,0,0)

Figure 5: Example of a first step equivalent game representation. Each box represents a manage-
ment path (p?, p3, o1*(f(p?, 09, 1°)), o3*(f(p?, P39, I°))) where p° is fixed, and p! is the following
optimal couple of decisions. This representation can be constructed by a careful interpretation
of the position of zone 8 with respect to the 8 lines in figure

An analysis of the first step equivalent game gives informations about four strategic situations.
The effect of a variation in player 1’s (resp. player’s 2) action when player 2’s (resp player 1)
action is 0, the effect of a change in player 1’s (resp. player 2) action when player 2 iS pqz- The
notation Ayo.0,,.. (X) = X(p) = pmaz) — X (p] = 0) indicates the variation of the function X
when p? goes from 0 to pyee- Unless it is precised we will consider variations from 0 to paz
and use the abbreviation Ao for Ay, ... Here an interpretation of table 5[ leads to:

inter-temporal effect (player 1’s point of view)
p(Z) =0 p(2) = Pmaz
Ap? (P%) = —Pmaz; Ap‘l’ (p%) = ~Pmax Ap‘l’ (p%) = —Pmaz; Ap‘f (P%) =0
inter-temporal effect (player 2’s point of view)
Pl =0 P = pmaz
A (p1) = 0;8,0(03) = —pmax Ay(pi) =0;A,(p3) =0

Figure 6: Inter-temporal strategic effects in the game displayed in figure

This example (b)) illustrates a rich asymmetrical strategic situation: the effect of a change in
player one first step action depends on what is player 2’s first step action. If p§ = 0 a increase
in pJ makes both stop managing at the second step. In the case where p = paz, the strategic
influence on player’s 2 second step action is not present anymore. In this zone, player 2 first
step decision has no impact on player 1’s second step action. We also remark that player 2 has
analyze a trade-off between action in the first stage and action in the second stage when p{ = 0.
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Proposition 3 : According to the initial condition, the inter-period strategic effect associated
with an increase of the first step action is either neutral or negative (this a substitutability
interaction).

Apg (pjl) = —Pmaz if Izorij + Ijo(l + Tjj)(l - P?) > (14)
Izorij(l_pmax)+lg(’)(1+rjj>(1_p?) < @ (15)

Ap?(p}) =0if I?Tij + IJQ(l + Tjj)(l — p?) >
I?rzj(l - pmaz) + Ijo(l + TJJ)(l - p(;) > Qg
or if
Brij+ (1 +755)(1 = p}) < oy
I??"ij(]. - Pmax) + IJO(]. + Tjj)(]. — p?) <y
O
Note that the size of the zone where player ¢’s first step action is associated with a strategic
effect is determined by 2 lines (equations [14]{and . Its size depends on the product pmaerij: if
management efficiency and inter-patch transmission are high, a strategic inter-temporal effect is
present for a larger set of initial condition. The understanding of the strategic behavior within the

game is valuable in itself. However it is worth comparing with other effect in order to understand
the formation of equilibria in the game.

3.1.1 Best response in the first step equivalent game (feedback best response)

Because the second stage presents solutions in dominant strategies, the 2/2/2 game might be
studied thanks to the analysis of the first step equivalent game. Payoffs in the first stage equiv-
alent game are given by the function Z:

Zi(IOa Soa p?ap(lz) - ’/T?(Iov Soap?7p()—z) + 5W11(f(‘[07 SO’pO)). (16)

The best response to p_; in the first stage equivalent game can be expressed by computing
A Zi(1°,8% 00, p2;) = Zi(1°,8°, p, p2;) — Zi(1°,5°, p, p2,). As already mentioned, a change
in player ’s first step action has various effects. Proposition [4] details the best response formula
effect by effect and, table [7| gives the interpretation of the different effects.

Effects formulation is made very general and some effects depend on the inter-temporal
relationship between actions. The variations in combinations of actions should therefore be
specified in order to look at a particular case. In this model,

Ap? (Pg) =0
O = —Pmax

according to I° and p.

An increase in the first step action can also create an overlap between actions in the first step
and action in the second step. (The idea is that some infections avoided due to management in
the first step would have been avoided due to management in the second step). The variation
Ay (09p}), k € {i,j} allows to capture this overlap that occurs when there is management at
both steps:

Ao (09p1) = Prraz It and pi(p) = prmaz) = Pmac (17)
=0if pllc(p? = Pmaz) =0 (18)
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Proposition 4 :
Player i’s best response to player j’s action (p?) is given by the sign of the following expression:

Ap?ﬁ—mmam(Zi(IO’ So,pg)) = (AP?H%1 + 5AP?Wi2)
= pmaaly (Vi — wi)rsi — u; — ¢x) — 5
—+ 4o
(vi = ui)(
Izopma:r'rii
+ I? prnaarii (1 + 144)
+ I pmaaTig i
— LA (p py)rigt s
— Ao (0 pi) (1 + ria)ris
( 11)( (1 +rig)rii + IO( p?)rjirii)
0 (D) I (L 4 755) (1 = p)rji + Lrijrys)
)
— uil} prmac
—(u;i + ¢ )(
Ao (p) (I (14 7i) + 19 (1 = pY)rsa))
- IOA o(pgpi) (1 +74)

If it is positive, player i prefers to do pq. at the first step. O
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direct effects in the first step (discounted by 9)

infections avoided in the first step

pmaac[io(vi - u1)ru

additional management cost in the first
step

pmaa:—[?(_ui - cr) —Cf

direct effects in the second step (discounted by 0)

first step infections would have gener-
ated damages in the second step

(Ui - ui)Izmea;Erii

infections avoided in the second step
due to infections avoided in the first
step

(’Ui — ’LLi)IiOpmaa:( Tu(l + ’r’ii) +7"ij7"ji)

0

%

overlapping between p
case where p} = praz

and p; in the

=17 (vi —wi) Do (p?p}) rijryi

0

%

overlapping between p
case where le = Pmaz

and p! in the

—17 (vi —wi) Do (pYpy) (1 +ria)ris

overlapping between p! and p; with re-
spect to management costs

_IiOApO (PYpi) (1 + i)

i

trees removed in the first step would
have produced in the second step

0
_uiIi Pmaz

effects due to changes in second step action (discounted by 0)

strategic effect through a change in
player j’s second step action

(vi—ui) Do (pj) (I (1+755) (1—pY)rji
+IPrirji)

variation in infections due to a change
in p}

(vi —wi) +Ap0(p;) ( L) + rig)rii +
(1 — p))rjirii)

variation in variable cost and produc-
tion lost due to a change in p}

—(uiter) (Do(pi) (I (L4ra) + 17 (1—

variation in the fixed cost due to a
change in p}

l)?)""lji)) i

Pmazx

Figure 7: Analysis of the different effects in the best response formula
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Interestingly, in case the strategic effect is present, Apg (pg) = —Pmaz (€€ proposition
for a characterization), and it plays against management in the first step. The inter-period
strategic effect is an incentive for differing management. The next result section will show
what important consequences this might have on the equilibrium structure. Without strategic
influence, a potential high overlapping is another incentive for differing action. We also note how
complicated the trade-off between action in the first step and action in the second step might
be. In the following section, we focus different equilibrium structures emerging from the game,
explaining which economic forces are key stones in the construction of those effects. It is also
clear from the best response formula, that a strategic immediate interaction appears in the first
step of the game, through the mediation of the temporal dimension.

Strategic interactions in the first stage equivalent game

The orientations of those strategic interactions are this time more complicated. They can
be retrieved by the sign of A P Apg Z;(1°,8°, p?, pg). Here according to parameters and initial
condition this interaction might be either complementarity or substitutability or even be neutral.
The interpretation of this new quantity is not straightforward given that A o A 0 (p?) might be
either —paz, 0, O Pmar, meaning that inter-temporal interactions might appear or disappear
according to the other player first action.

3.2 Analysis of the feedback equilibrium structures

In this section we focus on the equilibria structures in the 2/2/2 symmetric game. Given that
the best response formula is constituted by different competing effect, rich equilibria structure
are expected. In this part using both analysis and numerical example, we examine a bunch
of interesting features of the epidemic game. We characterize zones where the equilibrium is
associated with maximal and minimal effort. We then analyze examples in which the inter-
period strategic effect is pivotal (meaning that it determines the behavior of one player). An
example then illustrates the construction of a case without any equilibrium in pure strategy. This
list is ended by the characterization of two kinds of multiplicity of equilibria, in fully symmetric
situation.

3.2.1 Maximal and minimal efforts

This analysis have been restricted to situations in which I* << S*. This implicates that the
cases in which almost all trees are infected (which can generate strategic interactions) are not
considered here. Given I' << S*, there is of initial infection level that is high enough for
maximal action being a dominant strategy for both players. Similarly there is a zone for which
no intervention threshold can be reached. All this is summarized in proposition [5l Proposition
[]is useful in order to understand how our model behaves in terms of thresholds: players do not
manage when the infectious level is too low. Player manage for sure when the infection level is
sufficiently high (benefits are higher than costs even only considering single patches and without
looking at inter-patches fluxes). Between those two zones a decision might impact the other
player behavior (see figure [3)) and strategic interactions arise.
Proposition 5 : Within the initial condition state space, there is a zone where:

1. initial infection is sufficiently high so that both players do maximal effort (without inter-
player strategic considerations):
(Pmazs Pmaz, Pmazs Pmaz) 18 the unique Nash equilibrium if and only if (I9,19) € Anas,
where A,,q. is defined by the set of inequalities:
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0 « 1= 1Y (01=Pppmar)A+711)
12 > (l_pmaz)'er
IO > a2_1?(1_p771az)rl2
2 (1—pmace)(1+r22)
Ig > ko
I? > kq
where «; is defined in proposition |I| and k; and ko are some constants:

where,

Y = (ruvi — (L+7i)ui +e0) +6 % (
(i —wi)(ri(L 4+ (L4 74) (1 = pmaz)) + ri—it—ii(1 = Pmaz))
+ pmar(]- + Tii)cr - uz(]- - pmam))

2. initial infection is small enough so that both players do not react:
(0,0,0,0) is the unique Nash equilibrium of the game if and only if
(I9,19) € Apin; where A, is defined by the set of inequalities:

Ig < €2
[10 < €
918 >0

where €; and €5 are some constants.

O

We notice that k; does not depend on I_; meaning that it defines a vertical or an horizontal
line in the plan (I9,19). We therefore find a new threshold, independent of I_; once we know
that I belongs to Ayagz-

3.2.2 Transect analysis and pivotal strategic effect
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0,0,
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p. 0.
p. 0.
p.P.
p. p.

Figure 8: Management paths according to the initial condition, in the feedback Nash equilibrium
in an example where intra patch diffusion is twice higher than inter patch diffusion (parameter
are given in section [5.2)). We will be interested in the transect I{ = 0, 15.

Figure [§ illustrates the feedback equilibrium paths according to initial situations. Line f in
the graph allows to follow the evolution of the equilibrium policies when IY increases, for a fixed
I}. If we follow the line f from the bottom to the top, and recalling that a path is written
as a vector (p{, p9, p1, p3), we observe the following successions of equilibria paths: (p,0,0,0) ;
(p,0,0,0) ; (p,0,0,0) ; (p,p,0,0) 5 (p,p,p,0) ;5 (p,p,p,p). Along this transect, it is surprising
that as I3 increases the equilibrium path goes from (p, p,0,0) to (p, 0, p,0) and then comes back
to (p, p,0,0). The structure of first step equivalent games in the corresponding zones are helpful
in order to understand how such a sequence of equilibria might be generated.

The analysis of first step equivalent games in table [0] unveils that a strategic effect appears
when (p, 0, p,0) becomes the equilibrium path. Indeed the comparison between games 3 and 4
(see table |§I) shows that in game 4, contrary to game 3 A (p}rho? = prmaz) = —Pmaz- 15 is
now high enough such that, if p9 = 0, the threshold a; is reached due to an inter-patch flux.
On the zone corresponding to game 4, the strategic incentive makes player 2 prefer to avoid
management at the first step. However as I keeps increasing, player 2’s strategic incentive for
not managing becomes dominated by the need to control the propagation. Here the change in
the equilibrium path is not explicated by a modification in the strategic structure. The initial
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I9 range equivalent game SPNE game number
0.053 — 0.055 (0707P7 p) (Ovpapa 0) (p7f)7070) 5
(»,0,p,0) | (p,p,0,0)

0.043 — 0.053 || (0,0,p,p) | (0,p,p,0) || (p,0,p,0) 4
(p,O,p70) (P, P70,0)

0.031 —0.043 || (0,0,p,p) | (0,p,p,0) || (p,p,0,0) 3
(p7070’0) (p’p’070)

Figure 9: Equivalent games along the transect f, I3 increases from the bottom to the top, here
games for I3 € [0.031;0.055] are presented (the complete sequence is given in the appendix).
Parameters correspond to the example illustrated in figure |8, I is fixed and I = 0.15

infectious level simply impacts the relative magnitudes of the different effects. As we have seen,
there are opposed effects in the best response function, and when I3 increases, player’s 2 incentive
for a first step management increases faster than the indirect benefit from a second step extra
management by player 1.

This example is illustrative of how the strategic effect can be pivotal in the building of the
equilibria. In game 4, we are in a situation in which player 2 is willing to differ its management
only if it considers that action by player 1 in the first step is going to be triggered. We can define
a pivotal strategic effect as:

In the example we have developed here, the strategic effect is pivotal for the patch where
there is the less initial infection. In this case, the strategic effect explains why player 2’s policy
is (0,0) instead of (pmaz,0).

We say that the strategic effect is pivotal for the stabilization of p* = 0 if:

Ao (pjl) = —pmaz( pPresence of a strategic effect )

Apo(Zi(1%, 02,0 =) <0

(given the strategic effect it is preferable to not manage at the first step for player 1)
Ao (Zi(IO,p?,p?* =.)) — strategic ef fect > 0

(without the strategic effect, player 1 prefers to operate at the first step)
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= (0,0,0,0
(0.0.p. p)
= (0, p.0.0)
= (0,p.0.p)
= (0.p.p.p)
g = (p.0.0.0)
= (p.0.p.0)
= (p.0.p.p)
= (p.p.0.0)
= (p.p.0.p)
= (p.p.p.0)
o = (p.p.p.p)
2 equilibria
= (p.p.0.0)
(0.0.p.p)
= (p.0.p.p)
(0.p.p.p)
— no equilibrium
(=]
=
(=]

0.0 0.1 0.2 0.3 0.4

Figure 10: Subgame perfect equilibrium path according to the initial condition in an example
with low management efficiency rate and high inter-patch connectivity. Note the presence of
zones with multiple equilibria, and other zones with absence of equilibrium path (in white).

Paradoxical free-ridding We then focus on the equilibria paths in another symmetric sit-
uation which are illustrated in figure This new example corresponds to a case where the
detection rate is low, and intra and inter-patch diffusion coefficients are close to each-other (see
section [5.2| for details).

In figure [10| we remark a zone where (pmaz, 0, Prmazs Pmaz) 1S the unique pure strategy SPNE
path ; whereas (I < I9). However in this equilibrium path, player 1 manages two times and
player 2 manages once. This seems to be counter-intuitive as we might think that the highest
the initial number of infections is, the highest the incentive to manage will be. It happens that
in this case, player 1 has a dominant strategy in its first decision: he is interested in managing
whatever player 2 does.

Conversely, player 2 benefits from a strategic effect when p? = p,4.: when he does not
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manage in the first step, he triggers action by player 1 at the second step (we remark the patch
that benefits from the strategic effect is the one with the higher level of infection). So if player
1 follows its dominant strategy, player 2 has the power to direct player’s 1 second step action.
And for those parameters, this is enough for player 2 to be interested only in managing at the
second step. Whit this reasoning based on pure strategies, the predictability of player’s one
action makes the pure strategies equilibrium being detrimental for him, whereas we could expect
the contrary at first glance. When I3 increases, the strategic effect is not able anymore to drive
player 2 behavior towards a manipulation strategy. It simply more profitable for player 2 to
control as soon as possible.

player 2
0 P
0 (O&?:Z;p) (O’bi): Z);O) has p* = (p, 0, p, p) as single equilibrium path. Those
player 1 o | ©:0.0:0) | (P, p,0,0)
€1, C2 dy,do
parameters verify:
a; < C1
do < o
by < dy
as < bs.

3.2.3 Absence of equilibrium

In figure two symmetric zones without pure strategy SPNE appear in white. This example
lead to proposition [6] which concerns one of those two cases.

Proposition 6 : We are able to find parameters (see the example developed in figure
where it corresponds to the white zone where I{ < I9) for which the game:

player 2
0 P
0 (OZL?’Z ;p ) <O’bf ’ g; P) has no pure strategy Nash equilibrium. Those parame-
player 1 P (,0,p.p) | (p,p,0,0)
C1,C2 dl, d2

ters verify:
a1 < c1
dy < b
bs < ao
Co < do.

O

The structure of the first step equivalent game clarifies the impact of strategic effects in this
case. First let’s have look at player 1 behavior. There is a strategic effect only when p9 = praz
which explains why:

A?’? (Zl (107 Sov Pg = pmax)) <0.
whereas,
AP?(Zl(IO,SO,pg =0)) > 0.

When inspecting player’s 2 incentives, we remark that there is also a strategic effect when
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0 = Pmaz- However, we are in a zone where I < I$ and the incentive for controlling early
dominates the strategic effect in this case. We have therefore.

Ag?(Zl(IO,SO,pg =0))>0

When p{ = 0, management by player 2 (i.e. p3 = pmaz) does not allow to avoid another action
in the second step (pi remains p,q.). Here, this contributes to explain why player 2 prefers to
differ its action:

AS? (Zl(IO, 507/)(2) = pmax)) < 0.

In this first stage equivalent game, there is complementarity with respect to player 2 action and
substitutability with respect to player one action.

3.2.4 Multiplicity of equilibria: characterization in the case I{ = I

We see in the numerical example illustrated in figure that there are parameters for which
multiplicity of equilibria arise. In this case, two zones with multiple equilibrium appear. In
the first (0,0, p, p) and (p, p,0,0) are the two equilibrium paths. In the second, (p,0, p, p) and
(0, p, p, p) are the equilibrium paths. If we only look at the first actions (e.g. the choice in the
first step equivalent game), we can say that the first situation corresponds to a coordination
game, and that the second situation corresponds to an anti-coordination game. Different first
stage equivalent game might lead to the same type of multiplicity of equilibria. In the following
section, we focus on a theoretical analysis of two types of games in the particular case where
initial condition are identical (I{ = I9). We are interested in characterizing the parameters for
which those games appear, and, within those games the combinations of parameters compatible
with situations leading to multiplicity of equilibria.

Structure of the first step game according to the initial condition in the symmet-
ric game (IY = IJ) New notations are introduced in order to simplify the model taking into
account the symmetry. We note r = ry; = r9o the intra-patch propagation, ' = r13 = ro; the
inter-patch propagation , v the production value by uninfected trees and u the production value
by infected trees. We note also @« = a3 = as which corresponds to the threshold defined in
proposition 1. Due to the symmetry, these parameters are common to both patches.

The first step consists in the characterization of the initial condition leading to first step
equivalent games that contain the equilibria paths we study. Following the methodology devel-
oped in section 1, we construct the first step equivalent games along the bisector axis (figure
and delineate the boundaries between the subgames (figure .

Lemma 1 : If r > 7/, and ppmas €]0,1[, we observe, as IZQ increases, the succession of first
step equivalent games described in figure , with the boundaries A,B,C,D,E on the initial
condition presented in figure

O
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Lo+ 14+r+ 7"’(1 - .{)mrr.r) (1 + ’)(1 - pnmw) + (1 +r+ 7',}(1 - .”r!m,r‘)
A B8 C D E bisector axis /! = I}'

o’ =(0,0) (0,0,0,0) (0,0, p, )
pll = (p,0) (P: U~U~U) (P: 0,0,p) (p,(].p. ‘(J)
2= (0,p) (0,p,0,0) (0, p, p,0) (0. p, ps p)

0 — (p.p)
F=ioe (p, p,0,0) (P, p.p: p)

. ) 00 1 1

choice at t=0 resulting management path (P, 3 pi™s p37)

Figure 11: Representation of potential strategic paths according to the first step choice and the
initial condition. It corresponds to what happens in the bisector of the graph in figure

I? range equivalent game game number
> B (0,0,p,p) | (0,p,p,p) 5
(p;0,p,p) | (p,p,p,p)
D—FE | (0,0,p,p) | (0,p,p,p) 4
(p,0,p,p) | (p,p;0,0)
C-D (07O7p7p) (0,p,p,0) 3
(p,0,0,p) | (p,p,0,0)

B—-C | (0,0,p,p) | (0,p,0,0) 2
(£,0,0,0) | (p,p,0,0)

A—B [ (0,0,0,0) [ (0,p,0,0) 1
(p,0,0,0) | (p,p,0,0)

Figure 12: Structure of first step game along the bisector where I? = I9. T increases from the
bottom to the top and games are constructed using figure ([11)).

Multiplicity of equilibria: coordination and anti-coordination problems might arise
We notice that the paths involved in zones with multiplicity are present in game 2 for the first
case and game 4 for the second case see figure Conditions on payoffs within those games
finish the characterization.

Lemma 2 : We observe a coordination first stage game of the form:
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player 2
0 p
0 (0,(;757 p) (075727 0| where d > 7, a > w;
layer 1 : 7
play , | (0:0.0.0) 1(p,,0,0)
W,y d.d

if and only if there exist IY > 0 such that:

0 « [0

g 19

z€[1+T+7“/,1+T+7‘/(1—pmam)} (19)
Ap?,O—)pmaz (Zl(I()? Soap? - O)) < 0 (20)
Ap?70_)pmax (Zl(IO? SO?pg - pmaz)) > 0. (21)

O

Formulas are expanded in the supplementary material . A brief glance at those
formulas allows to see that an high 7’ favors the emergence of complementarity in such a game.
A small value of the parameter u often has a similar effect.

Note that the first condition [34] implicates that we set ourselves in a zone leading to the
particular first step equivalent game we want to study. Conditions and ensure that this
game is a coordination game. In this case it happens that there are parameters such that those
conditions define a non-empty set.

Why is that possible ? To understand why such a complementarity emerges in the first step
equivalent game, we can come back to the best response formula, and simplify it taking into
the structure of the game in this zone. When the first step action goes from 0 to ppq., the
variation of second step actions depends on players j first step. When p? =0, Ap} = —pmaz and
Ap} = —pmaz; and when p3 = ppaz, Apj = 0 and Ap; = 0. When p; = 0 an increase in player i
action leads to a variation in action at ¢t = 1. In particular, when player ¢ do not manage at t = 0
it triggers action by player j which generates a strategic effect. Player ¢ then benefits of player
7’s action in the second step without paying its cost. This explains why player ¢ best response
depends on player j action, a mechanism able to generate multiplicity in this symmetric case.

Anti-coordination game

In our example, we also observe a zone of multiplicity characterized by an anti-coordination
game.

Lemma 3 : We observe an anti-coordination game of the form:

player 2
0 p
N 2,5, p) | (0, 575; ?) | where v > d, w > a;
layer 1 : :
play , (,0,p,p) | (p,p,0,0)
w, d,d

if and only if there exist I? such that :
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« «

0
B 0= par) 77 T 7 )0 = pan). #2)
A (Zi(1°,8°% p = 0)) > 0 (23)
Ap? (Zi(Ioa SO)/)? = pmaz)) <0, (24)
(25)

where formulas are expanded in the supplementary material (see section O

Here again the strategic effect contributes to explain why we observe a situation with mul-
tiplicity of equilibria. This time a strategic effect is present when p; = 0, and plays against the
path (p, p,0,0), whereas no strategic effect give an incentive for the path (0,0, p, p). Interestingly
the equilibria path in pure strategies are asymmetrical. Even in presence of a symmetric initial
condition, one of the players contributes more to the effort in the equilibrium.

Proposition 7 : To summarize those observations, we can say that multiplicity of equilibria
might emerge from this game. It can even occur in the perfectly symmetric case (I = I9). For
some parameters, both coordination problems and anti-coordination problems can arise according
to the initial condition.

[0 Note that we provided only some sufficient conditions for observing multiplicity in previous
lemmas. Other situations (first step equivalent games) might lead to multiplicity of equilibria.
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3.3 Social inefficiencies arising from private management

In the epidemic game, inefficiencies might analytically be localized as both centralized and de-
centralized models are solvable. However, this involves heavy operations (and long solutions
formulations) in the most general case, because many sub-cases need to be distinguished. We
choose therefore to focus on examples (with given parameters values). This section aims at illus-
trating the different phenomenons that might contribute to social inefficiency in such a model.

Pareto solution

For each initial condition, we call Pareto solution the management path that leads to the
highest joined utility. It corresponds to the policy that maximizes the total profit over the whole
landscape:

-1 N

¢
arg max J(I°,8% p) = Z Z <St+1vz + I g — eopid} — Py (ca + ChAi)> (26)
:O i—1 max
subject to : (27)
I = 71, ) >

where P represents the management paths space. The action space is finite and discrete so
for a given initial condition, we are able to compute payoffs for all possible management paths
and simply select the highest. We also introduce J*(I°, S, p) = max, V(I°,5°, p)

Efficiency Obviously (by definition) the joined utility criterion leads to a better or equal result
as the decentralized criterion. This is due to the fact that agents do not take into account damages
generated in neighbors patches due to fluxes from their patch. The inefficiency associated with
private management is simply measured as the difference between the global welfare produced
under central planer and private managements. In this section, our aim is to better understand
inefficiencies in the two players / two periods / two patches model.

An important objective of this paper is to clarify which initial conditions lead to inefficiency
in our simple two-steps two-time periods model.

3.3.1 Overview of inefficiency in a numerical example, with symmetric agents:

Figure shows a complex structure for the inefficiency (difference between the joined utility
maximization and the sum of utilities from the Nash feedback solution). This example displays
some local gradients but we observe discontinuities where inefficiency goes from high to low
values. There are also zones where the inefficiency gradient is clearly higher then average.
This let’s assume some specific phenomenon occurring there. In the next section we give some
explanations by comparing feature of the feedback solution of the epidemic game with feature of
the joined utility solution.

27



0.4

0.08

o

o
— 0.06

0l
o — 0.04
— 0.02

o
0.00

-

o

0.0 0.1 0.2 0.3 0.4

Figure 13: Map of inefficiencies (in percentage of the social optimum value) according to the
initial conditions in a symmetric example with a small detection rate. In white zones there are
either multiple equilibria or no equilibrium.

3.3.2 Myopic inefficiency (case of minimal and maximal policies)

The first reason explaining why centralized and decentralized solutions might not coincide is
simply that there are basic differences in what is taken into account in the optimization. The
social planer integrates the idea that a local decision might increase as well the utility of neighbors.
Contrary to the selfish sole owner he takes into account the positive externality associated with
the game. We are going to illustrate this using cases of maximal and minimal policies illustrate
well the problem. Using backwards induction, it is easy to find conditions on the initial infection
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level for which maximal or minimal effort are equilibrium paths in the epidemic game .

As explained earlier efficiency is defined by comparing the central planer solution with the
outcome of the game.

Proposition 8 : It is possible to characterize zones in the plan (19, I9) for which the optimal
policy under the central planer point of view is:

1. full action: (p', p?) = (Pmaz, Pmazs Pmaz, Pmaz) is the optimal policy if and only if (19, I9) €
Qmaz

2. no action at all: (p!, p?) = (0,0,0,0) is the optimal policy if and only if (I?,19) € Quin.

where Q4 is the set of (19, I9) such that:
0 Br1—IY(1—pmaz)(1+711)
12 > 1(1_p7na3:)7‘21
70 > B2—IY (1= pmaz)T12
20 (1—pmaq)(1+r22)
I3 > q
D >q

and Q,,ip, is the set of (19, I9) such that:
120 < Mgy
I? < mj
9,19 > 0

where f3; = D%(ca + Chym— A;) where D; = (v; — u)rii + (v — uj)ri; — u; — ¢ and m; are
some constant that will be defined later. [

Those last constants can be compared to those introduced in the remarks accompanying
proposition 1. In particular D; a similar interpretation than F;, excepting that it takes into
account the externalities associated with inter-patch diffusion. D; > Fj: action is more profitable
under the central planer point of view.

The myopic effect allows to position zones where inefficiency occurs for sure. However between
the two zones defined in proposition 6, strategic effects might have an impact on the game
equilibria. Therefore the myopic effect does not alone explain inefficiencies positions and levels
and the strategic aspect should again be taken into account.

Proposition 9 : Comparing results from propositions [5] and [§] we characterize zones in the
plan (19, I9) where:

1. A) full action is both an optimal solution of the central planer problem and the Nash
equilibrium of the feedback game.
B) full action is a Pareto solution but it is not a Nash equilibrium of the game.

2. A) No action is both an optimal solution of the central planer problem and a Nash equi-
librium of the feedback game.
B) No action is the Nash equilibrium of the game, but it is not the Pareto solution.

O

The figures illustrates the proposition 5 part 1. This propositions characterizes analyt-
ically a large area of inefficiency, where intervention is necessary in order to reach the Pareto
solution.
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Figure 14: Illustration for proposition 4, part 1, the red area corresponds to values of (1Y, I9)
such that (p°, p*) = (Pmax> Pmazs Pmazs Pmaz) 1S both the Nash equilibrium of the game and an
optimal solution of the central planner problem. Within the gray area, extreme eradication is still
a Pareto solution, but it is not a Nash equilibrium of the game. In this case, private management
is inefficient.

3.3.3 Multiplicity and potential equilibrium selection problem

Multiplicity of equilibria introduces an uncertainty in the outcome of the game. In case two equi-
libria are present, we do not know a priori which equilibrium will be selected or even whether
one of the equilibria will be played. In the example developed in figure all the different equi-
librium paths described lead to inefficiency. However, we notice, for example in the comparison
of (0,0, p, p) with (p, p,0,0), that the second equilibrium path is socially better than the first.
In the other situation, we meet the same problem: above the bisector (z = y line) (0, p, p, p) is
socially better (p, 0, p, p). However in this case the equilibrium selection problem is more tricky
because the socially better equilibrium is not preferred by player 2.
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Figure 15: Map of inefficiencies (in percentage of the social optimum value) according to the
initial conditions in the zones with multiple SPNE in the same example as in figure Each
subplot indicates the inefficiency for a particular pure strategy equilibrium path.
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4 Discussion and conclusion

Contributions

The bio-economic model developed in this paper frames an original decentralized finite resource
management problem. The analysis of the associated game theoretic problem allows to formulate
agents’ best response function and identify different effects that impact agents’ profit maximiza-
tion. From this we understand how our two players two patches two time periods model can
lead to various peculiar results, due to the opposition between a strategic feedback effect and
other direct effects of a first step management action. Those results include situations without
equilibria, games with multiple equilibria (synchronization games, hawk dove games), games
where the feedback strategic effect leads to a free-ridding situation. It is worth noticing that
those observations are not commonly produced by models investigated in the field of public bad
management and are not reported neither in (Costello et al.| (2017)), nor in |Fenichel et al.| (2014]).
Surprisingly, our model joins a famous strand of literature in industrial economics in which the
strategic effect in two periods model is analyzed (Fudenberg and Tirole| (1984), Bulow et al.
(1985)). As in|de Frutos and Martin-Herran| (2017)), our model bridges the gap between this field
of game theory and environmental economics. The second part of our results consists in ana-
lyzing inefficiencies emerging from decentralized management. It is first shown how inefficiency
emerge from the simple fact that private owners do not consider the impact of their actions on
neighbors profit. Then numerical examples allow to illustrate how additional inefficiencies might
be generated and amplified by strategic interactions and multiplicity of equilibria.

Management implications, limitations, and perspectives

The exploration of behaviors generated by this model helps to understand the reasons why so-
cial inefficiencies might emerge. Particular free-ridding behaviors and inefficiencies levels depend
on the parameters and in particular on patches inter-connection level, as well as on the initial
infection level. One of the lessons we learn from our stylized model is that such behaviors should
be considered at least in some cases. For the analysis of a particular case, a careful parameter
analysis is necessary in order to determine whether:

e it will be worth managing for private owners
e feedback effect can be neglected in the analysis (due to small interconnections for instance)

e initial conditions and parameters are such that strategic interactions will impact agents’
behavior (and generate inefficiencies).

Our model remains stylized but allows to illustrate strategic phenomenons and ask questions
that could be included in more sophisticated (but often analytically intractable) approaches.
The modeler, when considering a particular problem, should also consider the nature of the
simultaneous strategic interaction: the immediate efficiency of a treatment might depend on
whether neighbors treat or do not treat; whereas we have only focused on the case without such
an immediate interaction.

To put our findings in the whole complexity of the epidemiological dynamics, many other
phenomenons could be incorporated in a global model: the age of the crops, (that could be dif-
ferent across patches), the time horizon length, the release of the hypotheses of a small infectious
level. With regard to strategic interactions the hypothesis of rational behaviors seems to be
contestable, and one might assume that agents reason according to simpler heuristics as soon as
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the situation becomes a bit complex. As an example |Atallah et al.| (2017)) works on a predefined
set of management strategies.

Many extensions would be worth developing at this point but are left for further work.
Among other things, we could mention the analysis of a multi-periods multi-players, multi-
players model. Another obvious continuation would be to analyze strategic interactions in the
field through a careful parameters estimation. This could be interesting to compare different
public bad management problems. Last but not least, this exploration of inefficiencies opens
the question of the mechanisms available in order to make the decentralized solution converge
towards the social optimum.
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5 Appendix

5.1 Backwards induction

Resolution of the game using the game tree structure Discrete time dynamic games
are often represented in extensive form using game trees. Those trees represent all management
paths from an initial condition as well as their associated payoffs. Figure [2] represents the 2
patches 2 time steps game in such a way. In what follows, we will note a management path as
(09, 3, pi, p3), with both first elements being decisions at ¢t = 0, or, more synthetically (p°, p')
with the first element being a vector gathering decisions at ¢t = 0.

From a given initial condition, SPNE trajectories can be looked for using backward induction.
This process can easily be translated into an algorithm:

1. Build the game tree as in figure
2. From the game tree build the subgame matrices as illustrated in figure (17))
3. Find the Nach equilibrium of each subgame E|

4. Keep the players’ payoffs corresponding to those Nash equilibria and construct a new game
matrix (as in figure using the paths identified in figure .

5. The resolution of this new static game gives the Subgame Perfect Nash Equilibria of the
game.

We use this algorithm in our R implementation.

P1

P 0 P
0| aj,o1 | b1,5 0 | ag,an | b, f32 0 | as,a3 | bs3,B3 0 | ag,cq | by, By
p gy | di,é P L_g2.72 | d2, 62 p | 93,73 | d3,03 P |_ga.va | dg,dy

0 P 0 p 0

Figure 17: Simplification of the dynamic game: each couple of decisions at ¢ = 0 leads to a
second step subgame. This second step subgame is directly built from the game tree

2When, rarely, a subgame has multiple equilibrium, as explained in proposition 1, each of them should be
considered when constructing the list of Nash equilibria of the global game. These distinctions do not lead to
differences in players payoffs.
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5.2 Parameters examples
5.2.1 First symmetric example

Our model has many parameters. We often remain as general as possible in the writing. However
for building numerical examples, we need to focus on some specific cases with precise values.
Parameters for the first example are 111 = roo = 1.6, 112 = 191 = 0.8, U = (1,1), V = (3,3),
¢qe = (0.05,0.05), ¢, =2, ¢, =0.01, A =(0.1,0.1), pymaz = 0.6, § = 0.96. With those parameters,
the propagation between orchard is twice smaller as propagation intra orchard. Detection rate
is realistic with respect to Sharka disease.

5.2.2 Second symmetric example

Parameters for the second example are 117 = 199 = 1.6, 119 = 191 = 1.5, U = (1,1), V =
(3,3), ca = (0.05,0.05), ¢, = 2, ¢, = 0.01, A = (0.1,0.1), ppmae = 0.25, § = 0.96. With
those parameters, the detection rate is small and inter-patch propagation is close to inter-patch
propagation.

5.3 Extreme behavior analysis

5.4 First step equivalent game (additional details)

From this, a new game matrix is constructed taking into account the different options available
at t = 0 as well as the consequences of potential choices at ¢t = 0 on the t = 1 decisions. Each first
step couple of choices is associated with a second couple of decisions as developed in proposition
(excepting when initial conditions are such that players are indifferent at the second step). We
propose a representation of the game using two matrices. The first matrix simply indicates the
complete management paths arising from each couple of decisions at t = 0, when ¢ = 1 subgames
are solved using the Nash equilibrium concept. This is illustrated in figure [4l where p}* and
ps* are determined using the result of proposition 1 and I' is computed using I° and the p°
corresponding to the appropriate box in the table.

player 2
0 Pmaz
0 al, as b1 b2

layer 1 : :
pay Pmazx C1,C2 dla d2

Figure 18: Equivalent game matrix for decision options at the first step. This representation will
be referred as the first step equivalent game matrix.

where

a1 = V12((07 0, U%*(f(o, 0))705*(]((07 0)))7107 SO) (29)
= 771((0’ 0)710’ SO) + 5W11(f((070)710a SO))
a2 = V;((O,O,O’%*(f(o,0)),0’%*<f(0,0))),10,50) (30>

= 7m5((0,0),1°,8%) + W5 (£((0,0),1°,5°))

where W} is the value function for a one step game constructed using the solution of subgame
1 (see proposition 1 for more explanations):
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if I >y and I}
if I{ > oy and I}
if If < oy and I3
if If < a; and I3

Other payoffs are computed using a similar reasoning.

The equations introduced in proposition [2] are illustrated in figure [} Each line is drown
assuming a particular p®. It represents a boundary between initial conditions leading to pi =
Pmaz (above the line) or p! = 0 (below the line). There is obviously symmetric results regarding
the other player second step action which leads us to a global mapping of the plan (1Y, I9)
according to players second step actions. Details of the different first step equivalent game are
given in table [19 with the interpretation in terms of inter-temporal strategic interactions.
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game number equivalent game inter-temporal effect
Apll pPj = 0 Pj = Pmaxzx
1 (0,0,0,0) | (0,p,0,0) || (pl) no effect no effect
(p,0,0,0) | (p,p,0,0) || (p2) no effect no effect
2 (0,0,p,p) | (0,p,0,0) || (pl) | substitution(1,2) no effect
(p,0,0,0) | (p,p,0,0) || (p2) | substitution(1,2) no effect
3 (0,0,p,p) | (0,p,p,0) || (pl) | substitution(1) substitution(1)
(p,0,0,p) | (p,p,0,0) || (p2) | substitution(2) substitution(2)
4 (0,0,p,p) | (0,p,p,p0) | (P1) no effect substitution(1,2)
(p,0,p,0) | (p,p,0,0) | (p2) no effect substitution(1,2)
5 (0,0,p,p0) | (0,p,p,p0) | (P1) no effect no effect
(p,0,p,p) | (p,psp,p) || (P2) no effect no effect
6 (0,0,p,0) | (0,p,0,0) || (pl) | substitution(1) no effect
(p,0,0,0) | (p,p,0,0) || (p2) | substitution(1) no effect
7 (0,0,p,0) | (0,p,p,0) || (pl) | substitution(1) substitution(1)
(p,0,0,0) | (p,p,0,0) || (p2) no effect no effect
8 (0,0,p,p) | (0,p,p,0) || (pl) | substitution(1,2) | substitution(1)
(p,0,0,0) | (p,p,0,0) || (p2) | substitution(2) no effect
9 (0,0,p,p) | (0,p,p,p) || (p1) | substitution(l) | substitution(1,2)
(p,0,0,p) | (p,p,0,0) || (p2) no effect substitution(2)
10 (0,0,p,p) | (0,p,p,p) || (pl) | substitution(1,2) | substitution(1,2)
(p,0,0,0) | (p,p,0,0) || (p2) no effect no effect
11 (0,0,p,p) | (0,p,p,p) || (p1) | substitution(2) | substitution(1,2)
(p,0,p,0) | (p,p,0,0) || (p2) no effect substitution(1)
12 (0,0,p,p) | (0,p,p,p) || (p1) no effect substitution(2)
(p,0,p,0) | (p,p,0,0) | (p2) no effect substitution(2)
13 (0,0,p,p) | (0,p,p,p) || (pl) | substitution(2) substitution(2)
(p,0,0,0) | (p,p,p,0) | (p2) no effect no effect

Figure 19: Structure of the equivalent games in the plan (1Y, I9), corresponding to the represen-
tation in figure[3] Columns 4 and 5 indicate the effect of a change in p?, on second step actions
(p} and p;) (when pg = 0 and when p? = Pmaz). Here, substitution(k) in column p; = pmae
and line p; means that when p? changes, p;. changes as well (in the opposite direction). Substi-
tution(1,2) means that both second step action change after an unilateral deviation by player 4
in the first step.
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5.5 Multiplicity analysis

Conditions for observing multiplicity in the coordination game 2 (see figure ?7)

0 o o

I

A L g — (31)
Ap?ﬁ—mmz(zi(fo’ 5909 =0)) <0 (32)
Ap?70—>pmam (Zi(IO’ Sovp? = anaaL‘)) > 0. (33)

D00 prmas (Zi(1°, 80, p] = 0)) = (A0llj +6A 0 W7)

= pmazly (Vi — u))r —u; — ¢.) — ¢
+ 0((vi — ui)(

I?pmaxr
— PmacdT'T
— pmacly (1 + )7’

)
— uil} prmac

H(wi +¢)( pmaa (I (1 +7) + 1917))

+cf

).

D00 pmae (Zi(10, 80, 07 = pimaz)) = (D010 + 0A 0 W?)
= pmaz Iy (Vi — w))r —u; — ¢.) — cf
+4(
(vi = ug)(
I pmaa™
+ I paar(1+7)
+ I? prnaar’?
)
— I prmax

).

Conditions for observing multiplicity in the coordination game 4 (see figure ?77)

0 o o

I; € , 34
! [1+T—|—r’ 1+T+T’(1—Pmax)] (34)
D 0.0 (Zi(1°,8°, 9] = 0)) <0 (35)
AP?,0~>pmMC (Zl(Ioa Soap? = pmam)) > 0. (36)
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Ap?,o—nomaw(zi([()) SO,P? =0)) = (Angz1 + 5Ap?Wi2)

= pmazly (Vi — )T —u; — ¢.) — ¢
+6((vi — ug)(

I} pmaar
— Pmaxd)T'T
- pmaszQ(]. +7)r’

)
— I Pmag

Hui + ) pmas (I (L+7) + 177))

+cy

).

Ap?,()%pmaz (Zi(IOa Soapg = Prmaz)) = (Ap?H} + 5Ap?Wi2)
= pmaal) (Vi — w)r —u; — ¢;) — ¢
+0(
(v; — u;)(
I pmaat
+ 1) prmazr(1 + 1)
+ I pmaar”
)
= I} prmas

).
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